Hieronymous Bosch (ca. 1450–1516) - Garden of earthly delights painted in 1503-1504; on display in Museo del Prado in Madrid

concept of intestinal flora

Use of ¹³C-labeled substrates to decipher fermentation of prebiotics in the human colon *in vitro* and *in vivo*

Koen Venema

TNO Healthy Living, Zeist, The Netherlands E-mail: koen.venema@tno.nl

Carbohydrate fermentation in the colon

Who does what? What is made? What is the effect on health?

proximal colon: primarily saccharolytic fermentation

transverse colon: combination of saccharolytic and proteolytic fermentation

distal colon: primarily proteolytic fermentation

distal colon: colon cancer and IBD

Limited accessibility of the colon

Principle: Use of stable isotopes

De Graaf and Venema, AMP 2008

In vitro model of the colon: TIM-2

the in vitro model

the inoculum

Bacterial metabolism

Propionate – starch experiment

Propionate pathways

Acrylate and succinate-decarboxylating pathways

Propionate – lactose experiment

Propionate pathways

Table 2.2.1. Flux distribution over the propionate synthesis pathways on different ¹³C-labeled substrates estimated from the isotopomeric labeling data.

substrate	acrylate pathway	succinate decarboxylation
	contribution (%)	pathway contribution (%)
starch	0	100
inulin	60	40
lactose	50	50

These results seem to indicate that a faster fermentation goes along with an increased contribution of the acrylate pathway, i.e. the pathway that has lactate as a precursor.

TIM-2 [U-¹³C]-starch experiment

Computer model: Flux within intestinal microbiota

Principle: Use of stable isotopes

De Graaf and Venema, AMP 2008

16S rRNA-SIP

Which microbes enjoy the "heavy" meal?

16S rRNA RT-PCR (Bacteria) Fraction number MspI 8 9 10 11 12 13 14 7 Fraction density Control 2h4h8h Control, fraction 5 793 g ml⁻¹ R. bromii 4h, fraction 4 1.802 g ml⁻¹ 50 bp **T-RF** length 1000 bp

International Human Microbiome Congress - Vancouver - March 9-11, 2011 - Koen Venema

Kovatcheva-Datchary et al. (2009), Environ Microbiol

Use of GOS by the intestinal microbiota -Implications for claim substantiation

International Human Microbiome Congress - Vancouver - March 9-11, 2011 - Koen Venema

Maathuis et al., (2010) in preparation

Determination of caloric value -Implication for obesity

Metabolite concentration in mmol and energetic value of 1 g inulin:													
	m+1	m+2	m+3	m+4	sum	kcal/mol	kcal						
acetate	0.362	4.317			4.679	209	0.978						
propionate	0.125	0.392	1.868		2.386	367	0.876						
butyrate	0.043	0.302	0.000	0.026	0.372	524	0.195						
Energetic value of 1 gram inulin (in kcal):													

- 1 gram of inulin has a caloric value of 2.05 kcal
- similarly, 1 gram of lactose has a caloric value of 2.41 kcal 1 gram of starch 1.69 kcal
- Therefore, depending on the fermentable substrate, the energy-harvest of the body is different ----> link of microbiota with obesity

Venema (2010) Curr Opin Clin Nutr Metab Care

Conclusions

Stable isotope-labeled substrates are excellent tools to study the processes occurring in the inaccessible colon - even in human individuals
The label can be traced in metabolites and microbial biomass
This allows to create the food-chain in the gut:

• Precise determination of the metabolites produced allows the exact calculation of energy harvested from fermentable substrates

Outlook

human feeding trials @ Maastricht University hospital

First experiments in humans!!

Use of the nasal catheter in 2 healthy volunteers

- no ¹³C-glucose in plasma
- increase in ¹³C-CO₂ in breath
- in crease in breath H₂

fermentation of ¹³C-lactose in colon

Bifidobacterium Collinsella	Propionibacterium	Streptococcus bovis et rel.	Streptococcus intermedius et rel.	Streptococcus mitis et rel.	Allistipes et rel.	Bacteroides fragilis et rel.	Bacteriodes ovatus et rel.	Bacteriodes plebeius et rel.	Bacteroides splachnicus et rel.	Bacteroides stercoris et rel.	Bacteroides uniformis et rel.	Parabacteroides distasonis et rel.	Prevotella tannerae et rel.	Tannerella et rel.	Sporobacter termitidis et rel.	Butyrovivrio crossotus et rel.	Clostridium symbiosum et rel.	Eubacterium rectale et rel.	Ruminococcus obeum et rel.	Fusobacteria	Alcaligenes faecalis et rel.	Anaerobiospirillum	Burkholderia	Enterobacter aerogenes et rel.	Escherichia coli et rel.	Haemophilus	Klebsiella pneumonia et rel.	Moraxellaceae	Oxalobacter formigenes et rel	Proteus et rel.	Pseudomonas	Serratia	Sutterella wadsworthia et rel.	Vibrio	Xanthomonadaceae	Yersinia et rel.	Uncultured Mollicutes	Akkermanisa

The team!

Acknowledgements

- Bart van Rossum
- Mick Deutz
- Roland Meesters
- Hans van Eijck
- Johanne Bloemen
- Daisy Jonkers
- Fred Troost
- Steven Vanhoutvin
- Henrike Hamer
- Andrea Kodde

- Annet Maathuis
- Albert de Graaf

- Markus Egert
- Petia Kovatcheva-Datchary
- Hauke Smidt
- Willem de Vos
- Tao He
- Saed Lahham
- Ad Sprenkels
 - Ton Jenneboer

BIOS The Lab-on-a-Chip G

AGENINGE

rijksuniversiteit

groningen

• Jan Sikkema